Aenictogiton

From Species-ID
Jump to: navigation, search
Notice: This page is derived from the original publication listed below, whose author(s) should always be credited. Further contributors may edit and improve the content of this page and, consequently, need to be credited as well (see page history). Any assessment of factual correctness requires a careful review of the original article as well as of subsequent contributions.

If you are uncertain whether your planned contribution is correct or not, we suggest that you use the associated discussion page instead of editing the page directly.

This page should be cited as follows (rationale):
Borowiec M (2016) Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae). ZooKeys (608) : 1–280, doi. Versioned wiki page: 2016-08-04, version 99685, https://species-id.net/w/index.php?title=Aenictogiton&oldid=99685 , contributors (alphabetical order): Pensoft Publishers.

Citation formats to copy and paste

BibTeX:

@article{Borowiec2016ZooKeys,
author = {Borowiec, Marek L.},
journal = {ZooKeys},
publisher = {Pensoft Publishers},
title = {Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae)},
year = {2016},
volume = {},
issue = {608},
pages = {1--280},
doi = {10.3897/zookeys.608.9427},
url = {http://zookeys.pensoft.net/articles.php?id=9427},
note = {Versioned wiki page: 2016-08-04, version 99685, https://species-id.net/w/index.php?title=Aenictogiton&oldid=99685 , contributors (alphabetical order): Pensoft Publishers.}

}

RIS/ Endnote:

TY - JOUR
T1 - Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae)
A1 - Borowiec M
Y1 - 2016
JF - ZooKeys
JA -
VL -
IS - 608
UR - http://dx.doi.org/10.3897/zookeys.608.9427
SP - 1
EP - 280
PB - Pensoft Publishers
M1 - Versioned wiki page: 2016-08-04, version 99685, https://species-id.net/w/index.php?title=Aenictogiton&oldid=99685 , contributors (alphabetical order): Pensoft Publishers.

M3 - doi:10.3897/zookeys.608.9427

Wikipedia/ Citizendium:

<ref name="Borowiec2016ZooKeys">{{Citation
| author = Borowiec M
| title = Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae)
| journal = ZooKeys
| year = 2016
| volume =
| issue = 608
| pages = 1--280
| pmid =
| publisher = Pensoft Publishers
| doi = 10.3897/zookeys.608.9427
| url = http://zookeys.pensoft.net/articles.php?id=9427
| pmc =
| accessdate = 2020-10-21

}} Versioned wiki page: 2016-08-04, version 99685, https://species-id.net/w/index.php?title=Aenictogiton&oldid=99685 , contributors (alphabetical order): Pensoft Publishers.</ref>

See also the citation download page at the journal.


Taxonavigation

Ordo: Hymenoptera
Familia: Formicidae

Name

Aenictogiton Emery, 1901bWikispecies linkPensoft Profile

Type-species

Aenictogiton fossiceps, by monotypy.
This Afrotropical genus was until recently known only from male specimens and little is known about its biology except that it is likely a subterranean nester and forager.

Diagnosis

Worker. The workers of the one Aenictogiton species for which this caste is known so far are unique in having propodeal spiracles situated high on the sclerite and propodeal lobes reduced, pygidium large but not armed with modified setae, and possessing marked constrictions between abdominal segments IV, V, and VI. Small body size is also characteristic, with mesosoma length under 0.65 mm in the only species known from workers. The same characters will serve to distinguish Aenictogiton from other Afrotropical dorylines that either have spiracles situated low on the propodeum, propodeal lobes well-developed and pygidium armed (Eburopone, Lioponera, Ooceraea, Parasyscia, Zasphinctus) or are markedly larger and have at most weakly impressed abdominal sternites at junction of segments IV, V, and VI, never conspicuous constrictions on both tergites and sternites (Aenictus, Dorylus).
Male. Aenictogiton males have distinctive wing venation where cross-vein cu-a in the fore wing arises proximal to M·f1, R·f3 is absent and is Rs·f3 ‘hanging’ free in the submarginal cell in the absence of Rs·f2. This, combined with the ‘army ant-like’ habitus that includes the lack of constriction between abdominal segments III and IV (no postpetiole), will serve to distinguish it from all other dorylines. The two other army ant genera that occur in the Afrotropics, Aenictus and Dorylus, do not have free Rs·f3 in fore wings.

Description

Worker. Head: Antennae with 12 segments. Apical antennal segment moderately enlarged, broader than and about equal in length to two preceding segments combined. Clypeus without cuticular apron. Lateroclypeal teeth absent. Parafrontal ridges reduced. Torulo-posttorular complex vertical. Antennal scrobes absent. Labrum without median notch or concavity. Proximal face of stipes projecting beyond inner margin of sclerite, concealing prementum when mouthparts fully closed. Maxillary palps 1-segmented. Labial palps 1-segmented. Mandibles falcate, with teeth on elongated masticatory margin. Eyes absent. Ocelli absent. Head capsule with differentiated vertical posterior surface above occipital foramen. Ventrolateral margins of head without lamella or ridge extending towards mandibles and beyond carina surrounding occipital foramen. Posterior head corners dorsolaterally immarginate. Carina surrounding occipital foramen ventrally absent. Mesosoma: Pronotal flange not separated from collar by distinct ridge. Promesonotal connection with Pronotomesopleural suture conspicuous and complete, but immobile. Pronotomesopleural suture visible, unfused up to notal surface. Mesometapleural groove deeply impressed, conspicuous. Transverse groove dividing mesopleuron absent. Pleural endophragmal pit concavity absent, but a minute pit present. Mesosoma dorsolaterally immarginate. Metanotal depression or groove on mesosoma absent. Propodeal spiracle situated high on sclerite. Propodeal declivity without distinct dorsal edge or margin and rectangular in posterior view. Metapleural gland with bulla visible through cuticle. Propodeal lobes absent. Metasoma: Petiole anterodorsally immarginate, dorsolaterally immarginate, laterally above spiracle immarginate. Helcium in relation to tergosternal Pronotomesopleural suture placed at posttergite and axial. Prora forming a simple U-shaped margin. Spiracle openings of abdominal segments IV–VI circular. Abdominal segment III anterodorsally immarginate and dorsolaterally immarginate. Abdominal segment III more than half size of succeeding segment IV, which is weakly constricted at presegmental portion (uninodal waist). Girdling constriction of segment IV present, i.e. pre- and postsclerites distinct. Cinctus of abdominal segment IV gutter-like and sculptured but not cross-ribbed. Abdominal segment IV not conspicuously largest segment. Abdominal tergite IV not folding over sternite, and anterior portions of sternite and tergite equally well visible in lateral view. Girdling constriction between pre- and posttergites of abdominal segments V and VI present. Girdling constriction between pre- and poststernites of abdominal segments V and VI present. Pygidium large, without impressed medial field, and simple, not armed with cuticular spines or modified setae. Hypopygium unarmed. Legs: Mid tibia with single simple/barbulate spur. Hind tibia with single pectinate spur. Hind basitarsus not widening distally, circular in cross-section. Posterior flange of hind coxa not produced as raised lamella. Metatibial gland present as oval patch of whitish cuticle. Metabasitarsal gland absent. Hind pretarsal claws simple. Polymorphism: Apparently monomorphic.
Male. Head: Antennae with 13 segments. Clypeus without cuticular apron. Parafrontal ridges absent. Torulo-posttorular complex vertical, reduced small, single vertical carina. Maxillary palps 1-segmented. Labial palps 1-segmented. Mandibles falcate. Ventrolateral margins of head without lamella or ridge extending towards mandibles and beyond carina surrounding occipital foramen. Carina surrounding occipital foramen ventrally absent. Mesosoma: Pronotal flange not separated from collar by distinct ridge. Notauli absent. Transverse groove dividing mesopleuron absent but horizontal depression may be present. Propodeal declivity reduced, without distinct dorsal edge or margin. Metapleural gland opening absent. Propodeal lobes absent. Metasoma: Petiole anterodorsally immarginate, dorsolaterally immarginate, and laterally above spiracle immarginate. Helcium in relation to tergosternal Pronotomesopleural suture placed at Pronotomesopleural suture and axial. Prora simple, not delimited by carina. Spiracle openings of abdominal segments IV–VI circular. Abdominal segment III more than half size of succeeding segment IV; latter weakly constricted at presegmental portion (uninodal waist). Girdling constriction of segment IV absent, i.e. pre- and postsclerites indistinct. Cinctus of abdominal segment IV absent, not impressed. Girdling constriction between pre- and postsclerites of abdominal segments V and VI absent. Abdominal segment IV not conspicuously largest segment. Abdominal sternite VII simple. Abdominal sternite IX distally armed with two spines, with lateral apodemes about as long as medial apodeme, directed anteriorly (towards head); all apodemes very short. Genitalia: Cupula long relative to rest of genital capsule and shorter ventrally than dorsally. Basimere broadly fused to telomere, with no sulcus trace at junction, and ventrally with left and right arms abutting. Telomere expanded at apex. Volsella narrow, hook-shaped, occasionally forming two hooks at apex. Penisvalva laterally compressed, narrow and lance-shaped at apex. Legs: Mid tibia with pectinate and simple spur. Hind tibia with pectinate and simple spur. Posterior flange of hind coxa not produced as raised lamella. Metatibial gland absent. Metabasitarsal glands absent. Hind pretarsal claws simple. Wings: Tegula present, broad, demiovate in shape. Vein C in fore wing present. Pterostigma broad. Abscissa R·f3 absent. Abscissae Rs·f2–3 present, disconnected from Rs+M. Cross-vein 2r-rs present, connected to Rs·f2–3&Rs·f4. Abscissae Rs·f4–5 differentiated into Rs·f4 and Rs·f5 by 2rs-m. Abscissa M·f2 in fore wing contiguous with Rs+M. Abscissa M·f4 in fore wing present, not reaching wing margin. Cross-vein 1m-cu in fore wing present. Cross-vein cu-a in fore wing present, arising from M+Cu and proximal to M·f1. Vein Cu in fore wing present, with only Cu1 branch prominent. Vein A in fore wing with abscissae A·f1 and A·f2 present. Vein C in hind wing absent. Vein Sc+R+Rs present. Vein R in hind wing present, extending past Sc+R but not reaching distal wing margin. Vein Sc+R in hind wing present. Abscissa Rs·f1 in hind wing present, contiguous with Rs·f2. Abscissa Rs·f2 in hind wing present, not reaching wing margin. Cross-vein 1rs-m in hind wing absent. Vein M+Cu in hind wing present. Abscissa M·f1 in hind wing present. Abscissa M·f2 in hind wing present. Cross-vein cu-a in hind wing present. Vein Cu in hind wing present. Vein A in hind wing with abscissae A·f1 and A·f2 present.
Gyne. Not described.
Larva. Not described.

Distribution

This is an exclusively Afrotropical lineage and most species have been described from the Congo Basin but records extend to southern and eastern Africa.

Taxonomy and phylogeny

The taxonomic history of Aenictogiton begins with Emery’s description of Aenictogiton fossiceps, a male-based taxon that he placed in the Dorylinae (Emery 1901d[1]). Subsequently, six other male-based species were described from the territory of Democratic Republic of the Congo. Santschi (1924)[2] gave a key to all the species then known from males. The worker caste of Aenictogiton remained a mystery for over a century, until it was discovered in Uganda in 2008 and then collected again in 2012 in the same country. The genus has been most often collected from the Congo Basin (Brown 1975[3]), although there are records from southern Angola, northern Namibia (Parr et al. 2003[4]), and southwestern Kenya (Hita Garcia et al. 2009[5]).
Aenictogiton is the sister taxon to Dorylus (Brady et al. 2006[6], Brady et al. 2014[7], Borowiec, in prep.).

Biology

Virtually nothing is known about the biology of Aenictogiton. Most records of males coming to light are associated with forest habitats (Brown 1975[3]), except the savanna/woodland record from Namibia (Parr et al. 2003[4]). The Ugandan workers collected in 2012 come from leaf litter sifted near a log in a moist evergreen forest in Kibale National Park. The mode of foraging, brood production, and colony life cycle remain unknown.

Species of Aenictogiton

Aenictogiton attenuatus Santschi, 1919b: Democratic Republic of the Congo
Aenictogiton bequaerti Forel, 1913a: Democratic Republic of the Congo
Aenictogiton elongatus Santschi, 1919b: Democratic Republic of the Congo
Aenictogiton emeryi Forel, 1913a: Democratic Republic of the Congo
Aenictogiton fossiceps Emery, 1901b: Democratic Republic of the Congo
Aenictogiton schoutedeni Santschi, 1924: Democratic Republic of the Congo
Aenictogiton sulcatus Santschi, 1919b: Democratic Republic of the Congo

Taxon Treatment

  • Borowiec, M; 2016: Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae) ZooKeys, (608): 1-280. doi


Other References

  1. Emery C (1901d) Studi sul polimorfismo e la metamorfosi nel genere Dorylus. Memorie della Reale Accademia delle Scienze dell’Istituto di Bologna (5)9: 183–201 [pagination of separate: 415–433].
  2. Santschi F (1924) Descriptions de nouveaux Formicides africains et notes diverses. II. Revue Zoologique Africaine (Brussels) 12: 195–224.
  3. 3.0 3.1 Brown W (1975) Contributions toward a reclassification of the Formicidae. V. Ponerinae, tribes Platythyreini, Cerapachyini, Cylindromyrmecini, Acanthostichini, and Aenictogitini. Search. Agriculture (Ithaca, New York) 5(1): 1–115.
  4. 4.0 4.1 Parr C, Robertson H, Chown S (2003) Apomyrminae and Aenictogitoninae: two new subfamilies of ant (Hymenoptera: Formicidae) for southern Africa. African Entomology 11: 128–129.
  5. Hita Garcia F, Fischer G, Peters M, Snelling R, Wägele J (2009) A preliminary checklist of the ants (Hymenoptera: Formicidae) of Kakamega Forest (Kenya). Journal of East African Natural History 98: 147–165. doi: 10.2982/028.098.0201
  6. Brady S, Schultz T, Fisher B, Ward P (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences of the United States of America 103: 18172–18177. doi: 10.1073/pnas.0605858103
  7. Brady S, Fisher B, Schultz T, Ward P (2014) The rise of army ants and their relatives: diversification of specialized predatory doryline ants. BMC Evolutionary Biology 14: 93. doi: 10.1186/1471-2148-14-93